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Abstract 

Weighting and variance estimation are two statistical issues involved in survey data analysis for 

large-scale assessment programs such as the Higher Education Information and Communication 

Technology (ICT) Literacy Assessment. Because survey data are always acquired by probability 

sampling, to draw unbiased or almost unbiased inferences for the populations, weights are 

required in making use of estimators such as a Horvitz-Thompson type. Variance estimation 

provides the basis for reporting errors. The weighting procedure generates weights based on 

statistical principles that are consistent with the sampling design. The estimation of the variance 

from survey data uses the delete-k jackknife resampling replicate (JRR) approach, which can be 

adapted for variant institutional sampling designs and for dissimilarity in institute conditions. To 

form clusters of k cases, a merge-dilute algorithm is proposed. The algorithm merges the cases of 

different groups into a queue and then allocates the cases of the queue to form homogeneous 

clusters of required sizes. The new algorithm is applied to the ICT sample from an institute 

taking the 2004 fall trial assessment.  

Key words: Horvitz-Thompson estimator, weight adjustment, variance estimation, merge-dilute 

algorithm 
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Introduction 

This paper lays out the weighting procedure for institutional surveys and the cluster-

forming algorithm for the delete-k jackknife resampling replicate (JRR) approach and then 

applies these procedures to the data from one institution that took the Higher Education 

Information and Communication Technology (ICT) Literacy Assessment (Jenkins & Qian, 2005; 

Williamson, Katz, & Redman, 2005). This example is a large-scale institutional assessment, 

providing report cards for institutes and their subpopulations. To make inferences for the 

populations of interest, institutional surveys must collect data by probability sampling from the 

institutes that participate.  

An institutional survey usually attempts to sample cases with approximate equal chances 

of selection. However, due to special interest in domains of study and due to variations in 

institute conditions, the cases are usually included in a sample with unequal probabilities. 

Therefore, to achieve unbiased estimates of statistics such as totals, means, and percentages, 

weights need to be applied in the Horvitz-Thompson estimators (Cochran, 1977; Kish, 1965). 

Moreover, weights also need to be adjusted for nonresponse and poststratification.  

The variances for statistics of interest are estimated by using the delete-k JRR approach 

(Rust, 1985; Shao & Tu, 1995; Shao & Wu, 1989; Wolter, 1985). The approach used in the paper 

is an extension of the method used in operational National Assessment of Educational Progress 

(NAEP; Allen, Donoghue, & Schoeps, 2001; Rust, 2004). The JRR approach approximates the 

distribution of the estimates by the empirical distribution of replicates and estimates the sampling 

variance by the variability among the replicates. Moreover, the delete-k JRR approach provides a 

balance between the number of replicates and the sizes of clusters.   

Section 1 of this paper describes the development of a weighting procedure to derive 

weights to perform unbiased estimation by the Horvitz-Thompson estimators. The procedure 

involves adjustments for nonresponse and poststratification.  

Section 2 introduces the delete-k JRR approach. Instead of dropping one case, the delete-

k JRR process drops a cluster of k cases in each replicate. A new methodology, the merge-dilute 

algorithm, is proposed to form the clusters for delete-k JRR variance estimation. The algorithm 

efficiently allocates different groups of cases into an evenly sorted queue that allows a flexible 

clustering strategy for the delete-k JRR procedure.  
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In Section 3, the procedure and algorithm developed in Sections 1 and 2 are applied to 

the sample from an institute that took the 2004 fall ICT trial assessment. Several sets of variance 

estimate results under different cluster forming schemes are compared. The results reveal the 

validity of the proposed variance estimation procedure.  

As concluded in Section 4, results in this report show the efficacy and applicability of the 

proposed weighting procedure and delete-k JRR approach. The framework can be adapted to 

similar situations involving other large-scale educational assessments.  

1. Weighting Procedure for Institutional Surveys 

To obtain unbiased or less biased estimation from survey data, weights need to be used in 

estimating statistics for reporting. The weighting procedure consists of three steps: (a) compute 

base weights for cases that have participated in the assessment, (b) adjust for nonresponse, and 

(c) conduct poststratification or raking.1  

1.1 The Horvitz-Thompson Estimator 

Let iπ  be the probability that case i is included in the sample and be the value of the 

variable of interest, measured from case i. When a sample is selected without replacement by 

probability sampling, the Horvitz-Thompson estimator of the population total ( ) is  

iy

Ŷ

ˆ i

i R i

yY
π∈

= ∑ , 

where R is the set of sampled cases of size n. The estimator  is unbiased (Cochran, 1977; Kish, 

1992). Let case weight  equal the inverse of the probability of selection. The target statistic of 

mean or proportion can be estimated by a ratio estimator. When the mean is the target, its 

estimate (

Ŷ

iw

y ) is 

i i
i R

i
i R

w y
y

w
∈

∈

⋅
=
∑
∑

. 

Nevertheless, the ratio estimator y  of the mean is biased with an order of  (Cochran, 1977).  (1/O n)

A typical institute sample design, like that employed with ICT, would involve stratified 

simple random sampling. Define stratum weight  (h = 1,…, L), where  is the size /h hW N N= hN
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of stratum h (e.g., freshman vs. junior), and  is the size of the population. Let  (k = 1, 2, 

…, ) be the value measured from case k in stratum h , and let be its corresponding weight. 

The mean estimate for stratum h (

N hky

hn hkw

hy ) is  

hk hk
k

h
hk

k

w y
y

w

⋅
=
∑
∑

. 

Then the estimator y  can be expressed as  

1

L

h h
h

y W
=

y= ⋅∑ . 

Let case weights be normalized to stratum size: h
k

N w= hk∑ . (For the descriptions of 

normalization of weights, see Section 1.4.) Then the estimate of the mean is 

1

L
i i

h h
h i

w y
y W y

w=

⋅
= ⋅ = ∑∑ ∑

. 

1.2 Case Base Weights  

Let hgkπ  be the inclusion probability for case k in stratum h and subpopulation g. Then 

the basic weight for case k is  

,
1

hgk
hgk

w
π

=B . 

The symbol  in the subscript stands for base weights. B

1.3 Adjustment for Nonresponse for Base Weights 

Two types of nonresponse occur in educational surveys: case nonresponse and item 

nonresponse. The case nonresponse occurs when a sampled individual does not respond to the 

request to be assessed. The causes of the case nonresponse could be noncontact or 

noncooperation. The item nonresponse refers to the failure to give answers to particular items on 

a test. Both types of nonresponse can be important sources of error in assessments, but only case 
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nonresponse is considered in the weighting process, whereas the item nonresponse is handled by 

the scaling process of item response theory models.  

Case nonresponse will cause a systematic difference between sample-based estimates of 

population statistics and their true values when respondents differ from nonrespondents on their 

ability to be measured. However, if respondents and nonrespondents are interchangeable on 

some characteristics for certain subgroups, weight adjustment can be applied to account for the 

case nonresponse.  

In the weight adjustment for case nonresponse, adjustment classes first need to be formed 

by the demographic variables of interest, such as gender and ethnicity. Occasionally the 

adjustment classes are the same as the subpopulations of interest within each stratum. Then, the 

base weights are multiplied by a factor in each adjustment class to make the assessed counts 

equal to the sampled counts by design. This adjustment is based on the assumption that the 

responses missing within each adjustment class are at random. Let nonresponse factor  in 

stratum h and subpopulation g equal the inverse of the response rate. Let the symbol  in the 

subscript stand for adjustment. The formula for adjustment is  

, .hgfA

A

, . , . , .hg hg hgw w f= ⋅A B A . 

The symbol  implies that the base weights are the same for all the cases in stratum h and 

subpopulation g. Note that .  

, .hgwB

, . 1hgf ≥A

1.4 Adjustment of Weights by Poststratification and Raking 

After nonresponse adjustment, some variables could show considerable gaps between a 

weighted sample distribution and its corresponding population distribution. Such gaps are 

revealed in the corresponding cells that are cross-classified by the variables. The inconsistency 

between sample and population arises from sampling fluctuation, response errors, or frame 

defects.2 Poststratification and raking can be used to correct for these known gaps between the 

sample distribution and the population distribution, to improve the precision of the survey 

estimates by reducing their mean squared error, and to enhance the comparability of the survey 

data under study with data from other surveys.  

Poststratification adjustment matches the weighted sample cell counts to the population 

cell counts by applying a proportional adjustment to the weights in each cell across the 
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contingency table (Kish, 1965). Sometimes, however, the sample can be spread too thinly across 

the cells on the table. Therefore, poststratification would produce extreme weights in the cells 

with few cases and cause large weighting effects. To avoid such flaws, raking is used to control 

marginal distributions for the variables of interest.  

A raking procedure iteratively adjusts the case weights in the sample to make the 

weighted marginal distributions of the sample agree with the marginal distributions of the 

population on specified demographic variables (Deming, 1943). The algorithm used in raking is 

called the Deming-Stephan algorithm (Deming & Stephan, 1940; Haberman, 1979).  

The process of poststratification consists of two main steps. First, the case weight is 

adjusted by multiplying it by a poststratification factor, , where c is the cell index in 

poststratification. Let gender be involved in poststratification and  be the case weight for 

case k in stratum h and subpopulation g. For a case in cell c = 1, then , and in 

cell c = 2, then . Second, the sum of the case weights needs to be normalized. 

The weight normalization refers to the adjustment of weights by multiplying a constant with each 

weight in a sample or subsample so that the sum of weights is equal to a defined size (e.g., 

population/subpopulation size, sample/subsample size), or one. If the sum of weights is 

normalized to one, a mean can be estimated by the weighted sum. The sum of case weights 

within each stratum is normalized to the stratum population total, 

r
cf

hgkw

, * r
hgk hgkw w f= A 1

2, * r
hgk hgkw w f= A

..hgk h
g k

w N=∑∑ , 

where  is the population size of stratum h (h = 1, …, L) and L is the total number of strata.  ..hN

To reduce weighting effects, the weight adjustment process usually includes a step of 

weight trimming. The trimming process truncates extreme weights caused by unequal probability 

sampling or by nonresponse and poststratification adjustment. It reduces variation caused by 

extremely large weights but introduces some bias in estimates. The process usually employs the 

criterion of minimum mean squared error (Potter, 1990). Weight trimming adds complexity to 

the weighting procedure. Because institute programs attempt to select cases with equal 

probabilities, their samples usually do not yield extreme case weights. Therefore, such programs, 

including the 2004 fall trial ICT assessment, likely do not need the weight trimming process.  
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2. Estimation of Sampling Variance 

The delete-k JRR approach is used to estimate the variances of statistics in reporting 

because it provides a balance between the number of JRR replicates and the sizes of clusters. 

This flexibility enables testing programs to comply with diverse requirements from varied 

institutes and variations in sampling designs. The implementation of the delete-k JRR approach 

mainly consists of two steps: forming the clusters of sampled cases and estimating the jackknifed 

variance. In the process of variance estimation, by applying a newly proposed merge-dilute 

algorithm, the cases are first formed into clusters of size k. Then, the process computes a 

replicate mean estimate from the sample by dropping one cluster. When all the replicates are 

calculated, the variance of the mean estimate is estimated by the variability among the JRR 

replicate estimates. Section 2.1 describes the cluster forming scheme. Section 2.2 discusses the 

proposed algorithm. Section 2.3 describes the jackknifing process.   

2.1 Forming Student Clusters for the Delete-k JRR Approach 

To form clusters, the cases within each stratum are partitioned into groups by their 

demographic characteristics such as gender and ethnicity. Because the demographic variables 

correlate with the variables measured, to estimate variation due to sampling, the empirical rule in 

JRR is to form clusters that are homogeneous to each other (Allen et al., 2001). Therefore, the 

rule for forming clusters is to evenly allocate cases with different demographic characteristics 

into each cluster. If possible, a cluster should be formed by assigning a similar number of cases 

from each group. When a group runs out of cases, a cluster is then formed by assigning more 

cases from the groups that are not used up. In some extreme situations, a cluster will contain 

cases from the same group. For example, assume cases are partitioned into four groups, gender 

by minority status, and the cluster size is 4 cases. If the size of one group is larger than 75% of 

the sample size, some clusters will contain multiple cases from the same group.  

2.2 The Merge-Dilute Algorithm 

In this study, a merge-dilute algorithm is designed to form the clusters. It merges several 

small groups into one group that is called a queue, and merges the cases by controlling the 

interval of cases from the same demographic group and the length of the queue of the cases from 

the same demographic group. A SAS macro program, in Appendix A, implements the merge-

dilute algorithm.  
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The merge-dilute algorithm for two groups. First, consider a simple situation: applying 

the merge-dilute algorithm to merge two demographic groups. Let the cases in each group be 

randomly sorted. Let integers  (1 2ands s 1s s2≤ ) be the sizes of the first and second groups. Let k 

and  be integers and s k  (0s 2 1 0s s= + 0 1s s< ). Then ( )2 1 11s s k s s0+ = + + . Let  . Then  1r s s= − 0

1 0s r s= + ,  

( )2 01s kr k= + + s ,  

and 

( ) ( )2 1 1 2s s k r k s+ = + + + 0 . 

Let  ( = ) be the original index of the cases in the first group. Then each case in the 

first group is assigned a new index:  

1d 1d 11, 2, ..., s

( )
( )

1 1*

1 1

1 ,
2 ,

k d d
d

k d r d
,
.

r
r

+ ⋅ ≤⎧
= ⎨ + ⋅ − >⎩

 

Let [ ]kc denote the group of numbers congruent to c modulo k.3 The symbol [ ]kc , 

particularly in this paper, is also used to identify with the corresponding remainders, and the 

possible results of [ ]kc  are 0, 1, …, k-1 . In the example of 13 5 2 3= ⋅ + , [ ] [ ]5 513 3 3= = . For 

, [27 7 3 6= ⋅ + ] [ ]7 727 6 6= = . Note that [ ]0 0k = .  

For the second group, let the original index of the cases be  (2d 2 21, 2, ...,d s= ). Let 

2 1dα = −  and krβ α= − . Then each case in the second group is assigned a new index:  

( ) [ ] [ ]

( ) ( )
[ ]( ) [ ]( )

2
*

1
21

1 1 ,

1 2 1 ,
1

k
k

k
k

k d
kd

k r k d k
k

α α
α

β β
β+

+

−⎧
+ ⋅ + + ≤⎪⎪= ⎨ −⎪ + ⋅ + + ⋅ + + >⎪ +⎩

,

.

kr

r

 

Generated by the above formulas, the new index is used as the index of the queue merged 

from the two original groups under consideration. Then the cases in the queue are sorted by the  

*d

index .  *d
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As an illustrative example, assume the sample sizes of two groups to be merged are 5 and 

13. The set of the original index for the first group is {1, 2, 3, 4, 5}, and the set of for the 

second group is {1, 2,…, 13}. Making use of the equations

1d 2d

2 1s ks s0= +  and , then 

 and . Applying the formula for the new index, the set of for the cases in 

the first group is {3, 6, 10, 14, 18}, and the set of for the cases in the second group is {1, 2, 4, 

5, 7, 8, 9, 11, 12, 13, 15, 16, 17}.  

1r s s= − 0

2s

1

13 2 5 3= ⋅ + 2 5 3= − *d

*d

Merge G groups by the algorithm. After the previous case of merging two groups has 

been considered, the algorithm can be generalized to merging G (>2) groups. Assume the cases 

within each group are randomly sorted. The groups are sorted by their sample sizes: 

. The first step applies the algorithm to merge two groups of the two smallest 

sizes ( ) and create the new index for the merged group. Then, for G - 1 groups, the 

groups are sorted by their sample sizes again: 

1 2 ... Gs s s≤ ≤ ≤

1 ands

* * *
1 2 ... Gs s s −≤ ≤ ≤  and the algorithm is applied to 

merge two groups with sizes of . The procedure is repeated until all groups are merged 

into one queue. It takes G - 1 steps to accomplish the process of merging G groups.  

*
1 ands *

2s

Assign cluster index. After all G groups are merged into one new queue and the cases are 

sorted by the new index, the cases are partitioned into clusters by assigning a cluster index to 

each case. Let  be the new index of the merged group and m be the cluster size for the delete-

k JRR approach. Note that k = m. Then the cluster index is defined as 

**d

** **

1m
d d

j
m

⎡ ⎤− ⎣ ⎦= + . 

The largest cluster index ( ) equals J [ ]( )1 1
m

m n n− − + , where n is the sample size. To define 

replicates, let ( )jR  be the replicate set of the sample by dropping cases with the cluster index j 

(=1, 2, …, J). Note that if the size of the last cluster is too small, the cases in the last several 

clusters may need to be adjusted according to specific situations.  

Property of the merge-dilute algorithm. Let a and b be two cases in a queue merged from 

two groups and their case indices be  and . To analyze the property of the merge-dilute 

algorithm, define the distance between a and b as  

ad bd
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( , ) a bd a b d d= − . 

The distance between a and b is called neighboring distance if a and b are from the same 

group and if the cases between a and b are all from the other group. According to the formula for 

the case index of the merge-dilute algorithm, the neighboring distance of two cases from the first 

group is either k + 1 or k + 2, and the neighboring distance of two cases from the second group is 

either 1 or 2. Therefore, the maximum neighboring distance of two cases in the merged group is 

k + 2. A queue of cases is called a continual queue if it only comprises cases from the same 

group and with sequential case indexes. According to the algorithm, the length of the continual 

queue for cases from the first group is 1, and the length of the continual queue for cases from the 

second group is either k or k + 1. For a group merged from two demographic groups, the length 

of the maximum continual queue is equal to or less than k +1.  

In the example in Section 2.2.1, the neighboring distance for cases from the first group is 

either 3 or 4, and the neighboring distance for cases from the second group is either 1 or 2. The 

length of the continual queue for cases from the first group is 1, and the length of the continual 

queue for cases from the second group is either 2 or 3. Thus, the maximum neighboring distance 

equals 4 and the length of the maximum continual queue is 3.  

In general, the maximum neighboring distance and length of the maximum continual 

queue are not equal for a merged queue. As an extreme example, for two groups of sizes 

( ), let all the cases in the first group be put in front of the cases in the second 

group. Then, the maximum neighboring distance equals 1, and the length of the maximum 

continual queue is .  

1 2ands s 1s s≤ 2

2s

The following discussion will show that the algorithm yields an evenly diluted queue 

when merging two groups. The criterion of an even merger is whether the occurrence rate for 

each case from the same group on each sequential queue is the same or close. The sequential 

queue is defined as the set of the cases with sequential case indices. For a special situation 0 0s =  

(i.e., r = ), each neighboring distance of two cases from the first group equals k + 1. Moreover, 

each continual queue of cases from the second group is k. For every sequential queue of length k 

+ 1, when , the occurrence of cases from the first group is 

1s

0 0s = ( ) 1k +1 − . Therefore, the 
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occurrence of cases from the second group is ( ) 1k +1 k− ⋅ . The occurrence rate for each case from 

the same group is the same. Therefore, the queue is evenly merged.  

For a general situation, , the neighboring distance of two cases from the first group 

equals either k + 1 or k + 2; the continual queue of cases from the second group is k or k+ 1. 

Thus, the merged queue has two distinct neighboring distances for the cases from the first group, 

and the difference between two distinct neighboring distances is one. Additionally, the merged 

queue has two distinct continual queues for the cases from the second group, and the difference 

between two distinct continual queues is also one. When , no plan can yield a merged 

queue with identical neighboring distances and identical continual queues for cases from the 

same group. Consequently, it is impossible to obtain an identical occurrence rate on each 

sequential queue with a fixed length. For a strategy that yields a queue with three or more 

distinct neighboring distances for cases from the first group, the difference between two distinct 

neighboring distances would be larger than one. Analogously, for the continual queues yielded 

by the plan, the difference between two distinct continual queues also would be larger than one. 

Such a plan would not be better than the strategy defined by the merge-dilute algorithm.  

0 0s >

0 0s >

Consider the occurrence rate for a queue merged by using the merge-dilute algorithm 

when . For the cases with case indexes less than r + k + 1, the occurrence rate of the cases 

from the first group is (  for each sequential queue of length k + 1. For the cases with the 

case index larger than r, the occurrence rate of the cases from the first group is (  for each 

sequential queue of length k + 2. Although they are not identical, the two occurrence rates are as 

close as possible.  

0 0s >

) 1k +1 −

) 1k +2 −

From the discussion above, for a general condition ( ), the merge-dilute algorithm 

yields a merged group with the maximum neighboring distance of k + 2 and the maximum 

continual queue equal to or less than k + 1. By applying the pigeonhole principle (Knuth, 1968; 

Lovasz, Pelikan, & Vesztergombi, 2003), no strategy to merge two groups will satisfy the 

following two conditions simultaneously: the maximum neighboring distance is less than k + 2 

and the length of the maximum continual queue is less than k + 1. Therefore, the algorithm is an 

optimal strategy for yielding an evenly diluted queue from two groups.  

0 0s >
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Because the property of the algorithm does not involve the variable cluster size, it allows 

choosing the optimal number of replicates based on the requirement of the delete-k JRR 

approach. Such flexibility provides the convenience of using one software package to analyze the 

samples from different designs under different institute conditions.  

For a sample of G groups, it takes G - 1 steps to form a merged queue by the proposed 

algorithm. In the first step, the two smallest groups are merged by the algorithm. Then, including 

the merged group, G - 1 groups remain. After this procedure is repeated G - 1 times, one queue is 

obtained that is merged from these G groups. Let the maximum neighboring distance of two 

cases in each step be , ,…, 1 2k′ + 2 2k′ + 1 2Gk −′ + . Let { }*
1 2 1max , ,..., Gk k k k −′ ′ ′= . Then, the 

maximum neighboring distance of two cases in the group is * 2k + . Moreover, the length of the 

maximum continual queue is equal to or less than * 1k + . By the same reasoning, for two groups, 

the procedure yields an evenly diluted queue from G groups.  

2.3 Computation of the Variance of Mean Estimates 

Variance estimation by the delete-k JRR approach. To calculate replicates, the JRR 

process repeatedly drops a cluster of cases from the sample and computes the replicate estimates, 

which are called the pseudo-values of estimates. The jth replicate estimate ( )jy  equals  

( )
( )

( )

j

j

i i
i R

j
i

i R

w y
y

w
∈

∈

⋅

=
∑

∑
,  

where replicate set ( )jR is defined in Section 2.2.3 and the mean estimate   

i i
i R

i
i R

w y
y

w
∈

∈

⋅
=
∑
∑

 

is defined in Section 1.1. To employ a standardized procedure in the calculation in analysis, the 

replicates are computed by applying replicate weights. For details of generating replicate 

weights, see Appendix B. The variance of y  is estimated by 

( ) ( )( )2

1

1 J

J j
j

Jv y y y
J =

−
= −∑ .  
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Statistical theory shows that both the delete-k JRR approach and the plain JRR approach, 

dropping one case in each replicate, yield consistent estimates (Shao & Wu, 1989). The 

comparison of the two approaches for the institute sample taking the 2004 fall ICT trial 

assessment can be found in Section 3.4. 

Estimation of the imputation errors and total variances. For large-scale assessments such 

as ICT and NAEP, the results in report card format are based on plausible values, which are 

imputed values that resemble individual test scores and have approximately the same distribution 

of the characteristics of interest. Plausible values were developed as a computational 

approximation to obtain consistent estimates of group characteristics in assessments where 

individuals are administered a sample of items. The process of making use of plausible values 

introduces imputation errors in reporting errors as well (Little & Rubin, 1987). The imputation 

error should be included in the total variance.  

The imputation error is estimated from repeating the procedure for each of M sets of 

plausible values. In practice such as in NAEP operation, M is set to 5. Let the score estimated by the 

mth set of plausible values be my , m = 1, …, M. The imputation error is estimated by   

( )2

1 1

M
m

m

y y
B

M=

−
=

−∑ . 

Then the total variance is estimated by 

( ) ( ) ( )11T Jv Mv y y −= + + B

)

, 

where ( is a finite population correction factor. The estimation process mimics that of 

operational NAEP: The calculation of 

11 M −+

( )Jv y is based on the first plausible value, and the 

estimation of B is based on all five plausible values. For details, see the “NAEP 1998 Technical 

Report” (Allen et al., 2001).   

3. An Example 

As a numerical example, an institute ICT sample for the fall 2004 trial assessment is used 

to illustrate the weighting process and variance estimation approach, including the algorithm 

used to aggregate students into clusters by their demographic characteristics. The base 

population of interest in the study consisted of 9,340 students aged 18 and above and was 
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stratified into two groups, freshman and junior, with the junior group including native rising and 

transfer rising juniors. Table C1 in Appendix C provides the information for the base population 

in the study. According to the sampling design, a sample of 800 students was drawn from the 

stratified population without replacement. Students were selected by simple random sampling 

within each cell. Due to case nonresponse, the assessed sample consisted of 135 freshman 

students and 96 junior students. Tables C2 and C3 in Appendix C provide information about the 

specified sample allocation and realized sample separately.   

3.1 The Computation of Base Weights for the 2004 Example 

By design, the selection probability ( ) for the students in group g in stratum h is 

approximately , where  and  are the sample size and the population size of the 

group g in stratum h. However, is not always well defined, as in the example, because 

sometimes institutes fail to provide necessary and accurate information of the population of 

interest. Using the sampling design of the 2004 fall example, 

.hgp

. /hg hgn N . .hgn .hgN

.hgp

2hp  was higher than 1hp . Table 1 

presents the selection probabilities for the institute for the 2004 fall example. 

Table 1 

The Selection Probability for the Cases in Each Subgroup for the 2004 Fall Example 

Stratum: h 
.hgp  

Freshman Junior 

URM: No 0.063 0.075 
g 

URM:Yes 0.255 0.178 

Note. Underrepresented minority (URM) refers to students who are African American, Native 

American, Hispanic American, and Pacific Islander American. 

3.2 Nonresponse Adjustment for the 2004 Fall Example 

After the base weights are created, the weights are subject to nonresponse adjustment. 

The adjustment classes were formed by the variable of underrepresented minority (URM), which 

refers to students who are African American, Native American, Hispanic American, and Pacific 

Islander American, in each stratum. Table 2 provides the nonresponse adjustment factor , .hgfA  
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for each class. This factor was used to account for nonresponse of those students who were 

invited to the assessment but did not appear at the test.  

Table 2 

The Nonresponse Factor for Cases in Each Class for the 2004 Fall Example 

Stratum: h 
, .hgfA  

Freshman Junior 

URM: No 2.553 3.877 
g 

URM:Yes 4.281 5.733 

Note. Underrepresented minority (URM) refers to students who are African American, Native 

American, Hispanic American, and Pacific Islander American. 

3.2 Poststratification Adjustment for the 2004 Fall Example 

The adjustment cells for poststratification were formed by the variable of gender within 

each stratum (freshman and junior). Let the symbol hs in the subscript stand for stratum and 

gender. Table 3 lists the poststratification factor r
hsf  for each cell. 

Table 3 

The Poststratification Factor for Cases in Each Cell for the 2004 Fall Example 

Gender: s r
hsf  

Female Male 

Freshman 0.89037 1.15624 
h 

Junior 1.00852 0.98210 

Let the cases be aggregated by gender within each stratum. The weight for a case with h 

= 1 and s = 1 (stratum = freshman and gender = female) is adjusted by multiplying it by 11
rf : 

, . 11 , .* *0.89037r
hsk hs hsw w f w= =A A . 
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The case weights within a stratum were normalized to the stratum population total. The trimming 

procedure was not applied to case weights of the 2004 fall example because no extreme weights 

were found after the adjustment for nonresponse.  

3.3 Forming Student Clusters for the Delete-k JRR for the 2004 Fall Example 

The demographic variables involved in forming clusters in variance estimation were 

gender and ethnicity. The cases within each stratum were first classified into four groups: (a) 

male and URM, (b) male and non-URM, (c) female and URM, and (d) female and non-URM. 

Then, cases were randomly sorted within each group. The merge-dilute algorithm was used to 

form the clusters utilized by the delete-k JRR approach, each cluster comprising 4 students from 

four different groups, whenever possible. For the data of the 2004 fall example, 34 and 24 

clusters were formed for the freshman and junior subsamples, respectively. To check the efficacy 

of the delete-k JRR approach, two alternative clustering schemes also were considered. One 

scheme employed only gender to form clusters, each of which contained 2 male and 2 female 

students, if possible. The second scheme randomly chose 4 cases to form a cluster. After clusters 

were formed, the replicate weights were generated by a SAS program. Then, the variances were 

estimated by implementing the delete-k JRR approach as described in Section 2.3.  

3.4 Empirical Results  

The numerical results for the 2004 fall example were used to compare the delete-k JRR 

approach with the plain JRR approach. Additionally, the results were used to examine the effects 

of different cluster forming schemes.  

First, the results showed that the delete-k JRR approach provided equivalent results to 

those derived by the plain JRR approach. The standard error of the institute mean, estimated by 

the delete-k JRR approach with clusters formed by the merge-dilute algorithm, was 1.51. The 

standard errors of means for freshmen and juniors were 2.09 and 2.19, respectively (see the first 

column of Table 4). By the plain JRR approach, where one case in each replicate within each 

stratum is dropped, the standard error of the institute mean was 1.45, and the standard errors for 

freshmen and juniors were 1.99 and 2.12, respectively.  

Although the two JRR approaches yield estimates that are close in size, the delete-k JRR 

approach is preferred because it provides the flexibility to analyze data from different sample 

designs for variant institutions by using an integrated strategy for the program. This capability is 
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important for institutional surveys because of the very diverse populations in institutions. 

Moreover, the samples for institutional surveys are usually selected by complex sampling 

procedures such as cluster sampling. For example, classes are often naturally used as clusters in 

the sampling process in institutional surveys. The delete-k JRR approach uses sampled clusters in 

the estimation of clustering effects, but the plain JRR approach ignores possible clustering 

effects in complex sampling (Cochran, 1977).  

Second, the results showed that different cluster forming schemes yield consistent results 

for the standard errors by the delete-k JRR approach. In Table 4, the first column contains the 

standard errors from the scheme, using gender and minority status to form clusters. This scheme 

attempts to form clusters with homogeneous demographics. The second column has the results 

from the scheme using only gender to form clusters. The results in the third column were 

obtained by forming clusters by randomly choosing 4 cases. All three schemes employed the 

merge-dilute algorithm. Table 4 shows that three different schemes yielded close results, except 

for the estimate for URM in the freshmen group. However, this exception group had a sample 

size of just 32. On average, the estimates in the first column are between those in second column 

and the third column. The consistency across different schemes shows that the delete-k JRR 

approach provides robust estimates for nonpercentile type statistics.  

Although different schemes provided consistent results in this example, samplers often 

prefer to choose a scheme to form clusters with homogeneous demographics of interest, which is 

the scheme used to estimate the values in the first column of Table 4. The procedure for selection 

of suitable demographical variables for the scheme is largely based on experience and the results 

of previous surveys. The NAEP samples have demonstrated how to form clusters in educational 

surveys (Allen et al., 2001). The findings in this study are congruent with the results of other 

surveys (Rust, 2004).  

Table C6 in Appendix C shows the mean estimates, jackknifed standard errors, 

imputation errors, and total standard errors for the subgroups of the 2004 fall example. The total 

variance equals the sampling variance plus the imputation variance; the total standard error is the 

square root of the total variance.  
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Table 4 

The Jackknifed Standard Errors Computed Based on Different Cluster Forming Schemes for 

the 2004 Fall Example 

Jackknifed SE 
Group 4 Groups Gender Random 

Total 1.51 1.46 1.64 
Freshmen 2.09 2.06 2.32 
Juniors 2.19 2.06 2.31 
Male students 2.42 2.15 2.29 
Female students 1.76 1.63 1.83 
Male students in freshmen group 3.87 3.28 3.33 
Female students in freshmen group 2.03 2.02 2.71 
Male students in juniors group 2.90 2.78 3.15 
Female students in juniors group 2.88 2.56 2.47 
    
URM students 4.52 3.82 4.37 
Non-URM students 1.47 1.56 1.66 
URM students in freshmen group 5.04 3.67 4.00 
Non-URM students in freshmen group 2.03 2.18 2.44 
URM students in juniors group 7.52 6.71 7.79 
Non-URM students in juniors group 2.13 2.22 2.24 

Note. Underrepresented minority (URM) refers to students who are African American, Native 

American, Hispanic American, and Pacific Islander American. 

4. Conclusion 

This paper has introduced the weighting procedure and the delete-k JRR approach that 

can be applied in institutional surveys such as the ICT program. The merge-dilute algorithm is 

proposed to form the clusters in variance estimation by the delete-k JRR approach. The algorithm 

allows formation of clusters of required sizes and, therefore, implementation of the delete-k JRR 

approach to variant sampling designs for diverse needs under diverse institution conditions.  

Application of the weighting procedure and the delete-k JRR approach to the data from 

the 2004 fall example yielded consistent results for several cluster forming schemes. These 

findings show the efficacy and applicability of the proposed framework, which can be adapted 

without difficulty to various situations involving similar large-scale assessments. 
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Notes
 

1 Raking refers to the procedure that makes use of the Deming-Stephan algorithm to adjust 

weights by iterative proportional fitting. Detailed descriptions can be found in Section 1.4. 

2 Frame defects refer to the problems with a sampling frame such as noncoverage, 

undercoverage, overcoverage, duplication, or misclassification. For details, see Kish (1965).  

3 Suppose k is a natural number. Then for two integers a and c, a is congruent to c modulo k 

[written:  (mod k)] if and only if a and c give the same remainder on division by k.          a c≡
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Appendix A 

SAS Program 

The SAS program implements the merge-dilute algorithm. 
****************************************************************************; 
****************************************************************************; 
***     The SAS program implements the merge-dilute algorithm            ***; 
***                                                                      ***; 
****************************************************************************; 
****************************************************************************; 
 
***** Assign the Library Names*****; 
libname ict_mda 'C:\...\Merge_dilute_Algorithm'; 
libname ict_wts 'C:\...\Weights';  
options mprint; ** mlogic symbolgen; 
 
***** The Grouping1 file is based on Weights file from lib ict_wts *****; 
***** The VARs on Weights file: case ID, case weight, group index, etc.*****; 
***** The VAR i_star is created for the new index in ict_mda.Grouping1 file*****; 
data ict_mda.Grouping1; set ict_wts.Weights; 

i_star = .; 
run; 
data ict_mda.Grouping; set ict_wts.Weights; 
run; 
***** The grouping1 is created as a temporary file in the WorkSpace *****; 
data grouping1; set ict_mda.Grouping1; 
run; 
 
***** SAS Macro implements the merge-dilute algorithm to merge two groups *****; 
***** For_Merge Macro takes three VARs as input *****; 
***** VAR1: Counter, Number of Merges done by the Algorithm *****; 
***** VAR2: Group1, Name/Value of the Subgroup 1 *****; 
***** VAR3: Group2, Name/Value of the Subgroup 2 *****; 
 
%macro for_merge(counter, group1, group2); 
 
***** Dataset processing1 contains the data of group1 *****; 
/* The temporary variable x is used for sorting the cases. If the new index  
is not yet generated, then x is assigned a random value (<1) for those cases;  
otherwise x is assigned the new index for cases in the group. The seed in 
random number generator is 587. */ 
 
data processing1; set Grouping&counter.; 

if w_group = &group1.; 
if i_star =. then x = ranuni(587); else x = i_star; 

run; 
proc sort data = processing1; by x; 
run; 
 
***** Count the sample size of Group1 *****; 
proc contents data = processing1; 

ods output Attributes = for_ct1; 
run; 
data for_ct1; set for_ct1; 

if _n_ = 1; 
run; 
 
***** Macro Variable of n1_dash is assigned the sample size of Group1 *****; 
data _null_; set for_ct1; 

call symput("n1_dash",cvalue2); 
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run; 
data processing11; set processing1; 

drop x; 
i1_dash = _n_; 

run; 
 
***** Dataset processing2 contains the data of group2 *****; 
data processing2; set Grouping&counter.; 

if w_group = &group2.; 
if i_star =. then x = ranuni(587); else x = i_star; 

run; 
proc sort data = processing2; by x; 
run; 
***** Count the sample size of Group2 *****; 
proc contents data = processing2; 

ods output Attributes = for_ct2; 
run; 
data for_ct2; set for_ct2; 

if _n_ = 1; 
run; 
 
***** Macro Variable of n2_dash is assigned the sample size of Group2 *****; 
data _null_; set for_ct2; 

call symput("n2_dash",cvalue2); 
run; 
data processing21; set processing2; 

drop x; 
i2_dash = _n_; 

run; 
 
***** Assign values to macro variables of k, r, k*r *****; 
data _null_; 

n0_dash = mod(&n2_dash, &n1_dash); 
k = (&n2_dash - n0_dash) / &n1_dash; 
r = (&n1_dash - n0_dash); 
kr = k * r; 
call symput("n0_dash",n0_dash); 
call symput("k",k); 
call symput("r",r); 
call symput("kr", kr); 

run; 
 
***** Calculate the New Index for cases in Group1 *****; 
data processing12; set processing11; 

if (i1_dash <= &r.) then i_star = (&k. + 1) * i1_dash; 
else i_star = (&k. + 2) * (i1_dash) - (&r.); 

run; 
 
***** Calculate the New Index for cases in Group2 *****; 
data processing22_half; set processing21; 

alpha = i2_dash - 1; 
Beta = alpha - (&kr.); 
alpha_mod_k = mod(alpha, &k.); 
Beta_mod_kp1 = mod(Beta, (&k. + 1)); 

run; 
data processing22; set processing22_half; 

if (i2_dash<=&kr.) then i_star=((&k.+1)*((alpha-
alpha_mod_k)/(&k.)))+alpha_mod_k+1; 
else i_star=((&k.+1)*(&r.))+((&k.+2)*(Beta-
Beta_mod_kp1)/(&k.+1))+Beta_mod_kp1+1; 
drop alpha beta alpha_mod_k Beta_mod_kp1; 

run; 
 
***** Drop the intermediate Calculation Variables *****; 
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data processing13; set processing12; 
drop i1_dash; 

run; 
data processing23; set processing22; 

drop i2_dash; 
run; 
 
***** Merge two Groups into file processing3 ****;  
***** The file includes the New Index and the renewed group variable ****; 
data processing3; set processing13 processing23; 

w_group = &group1. || &group2.; 
run; 

proc sort data = processing3; by Student_id; 
run; 

proc sort data = grouping&counter.; by Student_id; 
run; 
data _null_; 

countp = (&counter.) + 1; 
call symput("countp",left(countp)); 

run; 
*****Create Grouping(counter+1)dataset and merge it with processing3 *****; 
data Grouping&countp; 

merge grouping&counter(in=in1) processing3(in=in2); 
by Student_id; 
if(in1 = 1); 

run; 
***** QC the values of the macro variables *****; 
%put &n1_dash; 
%put &n2_dash; 
%put &n0_dash; 
%put &k; 
%put &r; 
%put &kr; 
 
%mend for_merge; 
 
**** To merge 4 groups, it needs to run the algorithm three times *****; 
**** Assume subgroup1 and subgroup2 are two smallest groups, and merge them 
*****; 
%for_merge(1, 'subgroup1', 'subgroup2'); 
**** Assume subgroup3 and subgroup1+2 are two smallest groups, and merge them *****; 
%for_merge(2, 'subgroup3', 'subgroup1+2'); 
**** Assume subgroup4 and subgroup1+2+3 are two smallest groups, and merge them *****;  
%for_merge(3, 'subgroup4', 'subgroup1+2+3'); 
 
proc sort data = ict_mda.Grouping; by Student_id; 
run; 
***** use Grouping COUNTER+1(4=3+1) ****; 
proc sort data = Grouping4; by Student_id; 
run; 
***** Recover the variables (w_group, etc.) in the original file by merge ****; 
data ict_mda.Grouping_with_istar; 

merge grouping4 ict_mda.Grouping; 
by Student_id; 

run; 
***** The sorted file Grouping_with_istar includes the New Index i_star ****; 
proc sort data = ict_mda.Grouping_with_istar; by i_star; 
run; 
 
****************************************************************************; 
***  The merge-dilute algorithm has been accomplished. Next step:        ***; 
***  based on required cluster size, generate the cluster index          ***; 
***  from the sorted file of ict_mda.Grouping_with_istar.                ***; 
****************************************************************************; 
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Appendix B 

Computation of Replicate Weights 

The replicate weights were created based on the student base weights obtained in Section 

1.2. The replicate weights for the freshmen and juniors were computed separately. Each replicate 

was formed by dropping one of the clusters that was formed as described in Section 2.2.3. Let j 

be the replicate index and r be the cluster index. Let  be the number of clusters formed in 

stratum h. Each set of replicate weights,  

hJ

{ } ( ), 1,...,j
hgk r hw j J= , is defined as follows:  

,
,

;

0 .

j
j hgk r

hgk r
w r

w
r j

⎧ j≠⎪= ⎨
=⎪⎩

 

Then, each set of replicate weights is adjusted by nonresponse adjustments and by 

poststratification. The procedures of nonresponse adjustments and poststratification are the same 

as those for the base weights, as described in Sections 1.3 and 1.4. After the adjustments, each 

set of replicate weights { },
j

hgk rw  is normalized to the stratum total by multiplying it by a ratio, the 

sum of overall case weights over the sum of the current set of replicate weights. For the institute 

of the 2004 fall example, 34 sets of replicate weights were generated for freshmen and 24 sets of 

replicate weights were generated for juniors.  

To facilitate implementing the JRR approach, the replicate weights in different strata are 

usually assembled into one set of replicates. For the institute of the 2004 fall example, the 

freshman replicates and the junior replicates were assembled into a set of 34 replicates. The first 

24 replicates in the set were formed by stacking the freshman replicates and junior replicates 

together. Because there were only 24 junior replicates, their case weights were used in the 

position of the last 10 replicates for the juniors.  
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Appendix C 

Population Information and Sampling Plan for the 2004 Fall Example 

Inclusion Criteria: 

Age: 18+ 

Gender: Female or male (i.e., nonmissing) 

Class: Freshman (0–44 earned credits) or “Rising Junior” (RJ) (75–104 earned credits) 

Ethnicity: African American, Native American, White American, Hispanic American, 

Asian American, or Pacific Islander/Hawaiian American 

Table C1 

Base Population for the 2004 Fall Example 

Group  

URM: g 
Native  

freshman 
Native  

RJ 
Transfer  

RJ Total 

No 
Count 4,153 2,621 1,545 8,319 
% within group 88.6% 90.3% 88.5% 89.1% 

Yes 
Count 537 283 201 1,021 
% within group 11.4% 9.7% 11.5% 10.9% 

Total 4,690 2,908 1,746 9,340 

Note. RJ = rising junior; URM = underrepresented minority, which refers to African American, 

Native American, Hispanic American, and Pacific Islander American students. 
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Table C2 

Sampling Design for the 2004 Fall Example (n = 800) 

Group  

URM: g 
Native  

freshman 
Native  

RJ 
Transfer  

RJ Total 

No 
Count 263 160 154 535 
% within group 65.8% 70.5% 65.5% 66.9% 

Yes 
Count 137 40 46 265 
% within group 34.3% 29.5% 34.5% 33.1% 

Total 400 200 200 800 

Note. RJ = rising junior; URM = underrepresented minority, which refers to African American, 

Native American, Hispanic American, and Pacific Islander American students. 

Table C3 

Unweighted Counts of the Assessed Sample 

URM: g Freshman Junior Total 

No    

Count 103 81 184 

% within group 76.30% 84.38% 79.65% 

Yes    

Count 32 15 47 

% within group 23.70% 15.63% 20.35% 

Total 135 96 231 

Note. URM = underrepresented minority, which refers to African American, Native American, 

Hispanic American, and Pacific Islander American students. 
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Table C4 

Weighted Counts Without Adjustment for the 2004 Fall Example 

URM: g Freshman Junior Total 

No 

Count 4,173.96 4,187.16 8,361.12 

% within group 88.60% 89.66% 89.12% 

Yes 

Count 537.21 483.12 1,020.33 

% within group 11.40% 10.34% 10.88% 

Total 4,711.17 4,670.28 9,381.45 

Note. URM = underrepresented minority, which refers to African American, Native American, 

Hispanic American, and Pacific Islander American students. 

Table C5 

Weighted Counts With Adjustment for the 2004 Fall Example  

URM: g Freshman Junior Total 

No 

Count 4,134.72 4,188.38 8,323.10 

% within group 88.62% 89.60% 89.11% 

Yes 

Count 530.73 486.17 1,016.90 

% within group 11.38% 10.40% 10.89% 

Total 4,665.45 4,674.55 9,340.00 

Note. URM = underrepresented minority, which refers to African American, Native American, 

Hispanic American, and Pacific Islander American students. 

 

27 



 

Table C6 

Mean Estimates, Jackknifed Standard Errors, Imputation Errors, and Total Standard Errors 

for the 2004 Fall Example 

 Jackknifed SE  Total SE 

Group Mean 
4 

Groups Gender Random
Imputation 

error 
4 

Groups Gender Random

Total 172.75 1.51 1.46 1.64 0.84 1.73 1.68 1.84 
Freshmen 171.28 2.09 2.06 2.32 1.53 2.59 2.57 2.78 
Juniors 172.39 2.19 2.06 2.31 0.95 2.39 2.27 2.50 
Male students 176.98 2.42 2.15 2.29 1.24 2.72 2.48 2.61 
Female students 168.71 1.76 1.63 1.83 1.27 2.17 2.07 2.23 
Male students in 
freshmen group 175.78 3.87 3.28 3.33 2.78 4.76 4.30 4.34 
Female students  
in freshmen group 170.97 2.03 2.02 2.71 0.64 2.13 2.12 2.79 
Male students 
in juniors group 178.18 2.90 2.78 3.15 1.59 3.31 3.20 3.53 
Female students  
in juniors group 166.44 2.88 2.56 2.47 2.19 3.62 3.37 3.30 
         
URM 167.31 4.52 3.82 4.37 0.98 4.63 3.94 4.48 
Non-URM 173.40 1.47 1.56 1.66 0.97 1.76 1.83 1.92 
URM in  
freshmen group 170.21 5.04 3.67 4.00 3.61 6.20 5.15 5.38 
Non-URM in 
freshmen group 173.37 2.03 2.18 2.44 1.77 2.70 2.81 3.01 
URM in  
juniors group 164.39 7.52 6.71 7.79 2.79 8.02 7.27 8.28 
Non-URM in 
juniors group 173.44 2.13 2.22 2.24 1.06 2.38 2.46 2.48 

Note. The results listed in the table are used to explain the methodologies used instead of 

reporting.  The ICT program uses the minimum sample size of 50 as the standard for reporting 

significance tests or for generalizing to the campus population. URM = underrepresented 

minority, which refers to African American, Native American, Hispanic American, and Pacific 

Islander American students. 
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